NetMind Power Documentation
  • NetMind Account
  • Inference
    • Model APIs
    • Dedicated Endpoints
  • Fine-tuning
  • Rent GPUs
    • Cloud Sync
    • Use Ngrok as Ingress Service
  • Rent Cluster (Comming soon)
  • API
    • API token
    • Files
    • Fine-tuning
      • List Models
      • Preparing your dataset
      • Create Job
      • Retrieve job
      • Download model
      • Cancel job
      • Deploy Checkpoint (coming soon)
    • Inference
      • Chat
      • Images
      • Haiper Inference
      • Asynchronous Inference
      • Dedicated Endpoints
      • Batch Processing
      • Embedding API
      • Deprecated Models
    • Rent GPU
      • SSH Authentication
      • List Available images
      • List Available GPU Instances
      • Create Your First Environment
      • Stop GPU instace
    • API Reference
      • Files
      • Fine-tuning
      • Rent GPU
Powered by GitBook
On this page

Was this helpful?

  1. API
  2. Rent GPU

List Available GPU Instances

Next, you need to view available GPU instances, including specifications such as CPU, memory, storage, bandwidth, and version. Review the returned details to select an instance that meets your requirements, and note down the instance ID for use in the next step.

Please refer to the "Full API Reference"-"Rent GPU"-"POST /v1/rentgpu/images" for details on how to create and manage custom image templates.

Example Request:

Replace {{API_TOKEN}} with your actual token.

curl --location 'https://api.netmind.ai/v1/rentgpu/machines' \
--header 'Authorization: Bearer {{API_TOKEN}}'
import requests

url = "https://api.netmind.ai/v1/rentgpu/machines"

payload = {}
headers = {
  'Authorization': 'Bearer {{API_TOKEN}}'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Example Response:

[
    {
        "price": "0.2",
        "labels": [],
        "node_name": "d539aa78-d76a-4534-99ee-a3db30f3c740",
        "gpu_name": "NVIDIA_GeForce_RTX_3090",
        "gpu_count": 2,
        "gpu_memory": 24,
        "cpu_name": "AMD_Ryzen_Threadripper_PRO_3995WX_64-Cores",
        "cpu_count": 40,
        "cpu_per_gpu": 20,
        "memory_per_gpu": 40,
        "memory_total": 80,
        "disk_per_gpu": 300,
        "disk_total": 600,
        "region": "US",
        "network_upload_speed": 917,
        "network_download_speed": 789,
        "up_time": 764,
        "online_rate": 0.9539,
        "driver_version": "535.183.01",
        "cuda_version": "12.2",
        "nvlink_status": false,
    },
    ...
]

PreviousList Available imagesNextCreate Your First Environment

Last updated 6 months ago

Was this helpful?