NetMind Power Documentation
  • NetMind Account
  • Inference
    • Model APIs
    • Dedicated Endpoints
  • Fine-tuning
  • Rent GPUs
    • Container
      • Cloud Sync
      • Use Ngrok as Ingress Service
    • Virtual Machine
  • Rent Cluster (Comming soon)
  • API
    • API token
    • Files
    • Fine-tuning
      • List Models
      • Preparing your dataset
      • Create Job
      • Retrieve job
      • Download model
      • Cancel job
      • Deploy Checkpoint (coming soon)
    • Inference
      • Chat
      • Images
      • Haiper Inference
      • Asynchronous Inference
      • Dedicated Endpoints
      • Batch Processing
      • Embedding API
      • Deprecated Models
    • Rent GPU
      • SSH Authentication
      • List Available images
      • List Available GPU Instances
      • Create Your First Environment
      • Stop GPU instace
    • API Reference
      • Files
      • Fine-tuning
      • Rent GPU
Powered by GitBook
On this page

Was this helpful?

  1. API
  2. Fine-tuning

List Models

Before creating a fine-tuning job, you need to check the list of models available, along with the customizable hyperparameters (hyper-parameters) that are supported for each model. You can use this information to select a model for fine-tuning and configure the appropriate hyperparameters according to their requirements.

Replace {{API_TOKEN}} with your actual token.

Example Request:

curl --location 'https://api.netmind.ai/v1/fine-tuning/template' \
--header 'Authorization: Bearer {{API_TOKEN}}'
import requests

url = "https://api.netmind.ai/v1/fine-tuning/template"

payload = {}
headers = {
  'Authorization': 'Bearer {{API_TOKEN}}'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

Example Response:

[
    {
        "pricing": 0.01,
        "name": "llama-3-8b",
        "default_hyperparameters": {
            "per_device_train_batch_size": 1,
            "learning_rate": 0.0001,
            "num_train_epochs": 30
        }
    }
]
PreviousFine-tuningNextPreparing your dataset

Last updated 6 months ago

Was this helpful?